Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
535064 | Pattern Recognition Letters | 2007 | 7 Pages |
The vector approximation file (VA-file) approach is an efficient high-dimensional indexing method for image retrieval in large database. Some extensions of VA-file have been proposed towards better query performance. However, all of these methods applying sequential scan need read the whole vector approximation file. In this paper, we present a new indexing structure based on vector approximation method, in which only a small part of approximation file need be accessed. First, principal component analysis is used to map multidimensional points to a 1D line. Then a B+-tree is built to index the approximate vector according to principal component. When performing k-nearest neighbor search, the partial distortion searching algorithm is used to reject the improper approximate vectors. Only a small set of approximate vectors need to be sequentially scanned during the search, which can reduce the CPU cost and I/O cost dramatically. Experiment results on large image databases show that the new approach provides a faster search speed than the other VA-file approaches.