Article ID Journal Published Year Pages File Type
535109 Pattern Recognition Letters 2007 9 Pages PDF
Abstract

In this paper, we investigate the performance of the fuzzy entropy approach when it is applied to the segmentation of infrared objects. Through a number of examples, the performance is compared with those using existing entropy-based object segmentation approaches and the superiority of the fuzzy entropy method is demonstrated. In addition, the ant colony optimization (ACO) is used to obtain the optimal parameters. The experiment results show that, compared with the genetic algorithm (GA), the implementation of the proposed fuzzy entropy method incorporating with the ACO provides improved search performance and requires significantly reduced computations. Therefore, it is suitable for real-time vision applications, such as automatic target recognition (ATR).

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,