Article ID Journal Published Year Pages File Type
535344 Pattern Recognition Letters 2014 8 Pages PDF
Abstract

Existing semi-supervised learning algorithms focus on vectorial data given in Euclidean space. But many real life data are non-metric, given as (dis-)similarities which are not widely addressed. We propose a conformal prototype-based classifier for dissimilarity data to semi-supervised tasks. A ‘secure region’ of unlabeled data is identified to improve the trained model based on labeled data and to adapt the model complexity. The new approach (i) can directly deal with arbitrary symmetric dissimilarity matrices, (ii) offers intuitive classification by sparse prototypes, (iii) adapts the model complexity. Experiments confirm the effectiveness of our approach in comparison to state-of-the-art methods.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,