Article ID Journal Published Year Pages File Type
535393 Pattern Recognition Letters 2008 10 Pages PDF
Abstract

In this paper, we first present a self-training semi-supervised support vector machine (SVM) algorithm and its corresponding model selection method, which are designed to train a classifier with small training data. Next, we prove the convergence of this algorithm. Two examples are presented to demonstrate the validity of our algorithm with model selection. Finally, we apply our algorithm to a data set collected from a P300-based brain computer interface (BCI) speller. This algorithm is shown to be able to significantly reduce training effort of the P300-based BCI speller.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , ,