Article ID Journal Published Year Pages File Type
535410 Pattern Recognition Letters 2008 6 Pages PDF
Abstract

Technical mismatches between the training and matching conditions adversely affect the performance of a speaker recognition system. In this paper, we present a matching scheme which is invariant to feature rotation, translation and uniform scaling. The proposed approach uses a neighborhood graph to represent the global shape of the feature distribution. The reference and test graphs are aligned by graph matching and the match score is computed using conventional template matching. Experiments on the NIST-1999 SRE corpus indicate that the method is comparable to conventional Gaussian mixture model (GMM) and vector quantization (VQ)-based approaches.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , ,