Article ID Journal Published Year Pages File Type
535739 Pattern Recognition Letters 2006 13 Pages PDF
Abstract

This paper proposes a new evolutionary region merging method in order to efficiently improve segmentation quality results. Our approach starts from an oversegmented image, which is obtained by applying a standard morphological watershed transformation on the original image. Next, each resulting region is represented by its centroid. The oversegmented image is described by a simplified undirected weighted graph, where each node represents one region and weighted edges measure the dissimilarity between pairs of regions (adjacent and non-adjacent) according to their intensities, spatial locations and original sizes. Finally, the resulting graph is iteratively partitioned in a hierarchical fashion into two subgraphs, corresponding to the two most significant components of the actual image, until a termination condition is met. This graph-partitioning task is solved by a variant of the min-cut problem (normalized cut) using a hierarchical social (HS) metaheuristic. We have efficiently applied the proposed approach to brightness segmentation on different standard test images, with good visual and objective segmentation quality results.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , ,