Article ID Journal Published Year Pages File Type
536402 Pattern Recognition Letters 2013 7 Pages PDF
Abstract

The heteroscedasticity problem is a great challenge in pattern recognition, particularly in statistics-based methods. The traditional method that is mainly used to solve this problem is heteroscedastic Discriminant Analysis. In this study, we propose a novel solution to the problem, called Super-class Discriminant Analysis (SCDA). Our method uses the “divide and conquer” methodology to partition the heteroscedastic dataset into super-classes with reduced heteroscedasticity and models them separately. Theoretically, a super-class should contain a set of classes having the same within-class variation. In practice, a heteroscedastic dataset can be coarsely divided into several super-classes based on certain semantic criteria such as gender or race. We evaluate our method with toy data and three real-world datasets, which can be divided into super-classes according to gender and race. Experimental results indicate that the proposed method can effectively resolve the problem of heteroscedasticity.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
,