Article ID Journal Published Year Pages File Type
536597 Pattern Recognition Letters 2010 12 Pages PDF
Abstract

This paper presents two embedded feature selection algorithms for linear-chain CRFs named GFSA_LCRF and PGFSA_LCRF. GFSA_LCRF iteratively selects a feature incorporating which into the CRF will improve the conditional log-likelihood of the CRF most at one time. For time efficiency, only the weight of the new feature is optimized to maximize the log-likelihood instead of all weights of features in the CRF. The process is iterated until incorporating new features into the CRF can not improve the log-likelihood of the CRF noticeably. PGFSA_LCRF adopts pseudo-likelihood as evaluation criterion to iteratively select features to improve the speed of GFSA_LCRF. Furthermore, it scans all candidate features and forms a small feature set containing some promising features at certain iterations. Then, the small feature set will be used by subsequent iterations to further improve the speed. Experiments on two real-world problems show that CRFs with significantly fewer features selected by our algorithms achieve competitive performance while obtaining significantly shorter testing time.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,