Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
537309 | Signal Processing: Image Communication | 2010 | 10 Pages |
Context-based adaptive variable length coding (CAVLC) and context-based adaptive binary arithmetic coding (CABAC) are entropy coding methods employed in the H.264/AVC standard. Since these entropy coders are originally designed for encoding residual data, which are zigzag scanned and quantized transform coefficients, they cannot provide adequate coding performance for lossless video coding where residual data are not quantized transform coefficients, but the differential pixel values between the original and predicted pixel values. Therefore, considering the statistical characteristics of residual data in lossless video coding, we newly design each entropy coding method based on the conventional entropy coders in H.264/AVC. From the experimental result, we have verified that the proposed method provides not only positive bit-saving of 8% but also reduced computational complexity compared to the current H.264/AVC lossless coding mode.