Article ID Journal Published Year Pages File Type
537621 Signal Processing: Image Communication 2013 13 Pages PDF
Abstract

•This study addresses a bit transform for low bit-resolution motion estimation.•We formulate the bit-resolution reduction into optimum quantization.•The membership function eliminates the mismatch of hard thresholding due to noises.•SAD is a fast matching metric suitable for low bit-depth motion estimation.

This study proposes a novel fuzzy quantization based bit transform for low bit-resolution motion estimation. We formalize the procedure of bit resolution reduction by two successive steps, namely interval partitioning and interval mapping. The former is a many-to-one mapping which determines motion estimation performance, while the latter is a one-to-one mapping. To gain a reasonable interval partitioning, we propose a non-uniform quantization method to compute coarse thresholds. They are then refined by using a membership function to solve the mismatch of pixel values near threshold caused by camera noise, coding distortion, etc. Afterwards, we discuss that the sum of absolute difference (SAD) is one of the fast matching metrics suitable for low bit-resolution motion estimation in the sense of mean squared errors. A fuzzy quantization based low bit-resolution motion estimation algorithm is consequently proposed. Our algorithm not only can be directly employed in video codecs, but also be applied to other fast or complexity scalable motion estimation algorithms. Extensive experimental results show that the proposed algorithm can always achieve good motion estimation performances for video sequences with various characteristics. Compared with one-bit transform, multi-thresholding two-bit transform, and adaptive quantization based two-bit transform, our bit transform separately gains 0.98 dB, 0.42 dB, and 0.24 dB improvement in terms of average peak signal-to-noise ratio, with less computational cost as well.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , ,