Article ID Journal Published Year Pages File Type
537671 Signal Processing: Image Communication 2006 14 Pages PDF
Abstract

A theoretical framework to analyze the rate-distortion performance of a light field coding and streaming system is proposed. This framework takes into account the statistical properties of the light field images, the accuracy of the geometry information used in disparity compensation, and the prediction dependency structure or transform used to exploit correlation among views. Using this framework, the effect that various parameters have on compression efficiency is studied. The framework reveals that the efficiency gains from more accurate geometry, increase as correlation between images increases. The coding gains due to prediction suggested by the framework match those observed from experimental results. This framework is also used to study the performance of light field streaming by deriving a view-trajectory-dependent rate-distortion function. Simulation results show that the streaming results depend both the prediction structure and the viewing trajectory. For instance, independent coding of images gives the best streaming performance for certain view trajectories. These and other trends described by the simulation results agree qualitatively with actual experimental streaming results.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,