Article ID Journal Published Year Pages File Type
537941 Signal Processing: Image Communication 2006 20 Pages PDF
Abstract

Three-dimensional (3D) meshes are used intensively in distributed graphics applications where model data are transmitted on demand to users’ terminals and rendered for interactive manipulation. For real-time rendering and high-resolution visualization, the transmission system should adapt to both data properties and transport link characteristics while providing scalability to accommodate terminals with disparate rendering capabilities. This paper presents a transmission system using hybrid unequal-error-protection and selective-retransmission for 3D meshes which are encoded with multi-resolutions. Based on the distortion-rate performance of the 3D data, the end-to-end channel statistics and the network parameters, transmission policies that maximize the service quality for a client-specific constraint is determined with linear computation complexity. A TCP-friendly protocol is utilized to further provide performance stability over time as well as bandwidth fairness for parallel flows in the network. Simulation results show the efficacy of the proposed transmission system in reducing transmission latency and providing smooth performance for interactive applications. For example, for a fixed rendering quality, the proposed system achieves 20–30% reduction in transmission latency compared to the system based on 3TP, which is a recently presented 3D application protocol using hybrid TCP and UDP.

Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,