Article ID Journal Published Year Pages File Type
5380 Biomaterials 2016 11 Pages PDF
Abstract

Identification of vulnerable atherosclerotic plaques by imaging the molecular characteristics is intensively studied recently, in which verification of specific markers is the critical step. JAM-A, a junctional membrane protein, is involved in the plaque formation, while it is unknown whether it can serve as a marker for vulnerable plaques. Vulnerable and stable plaques were created in rabbits with high cholesterol diet with or without partial ligation of carotid artery respectively. Significant higher JAM-A expression was found in vulnerable plaques than that in stable plaques. Furthermore, JAM-A was not only expressed in the endothelium, but also abundantly expressed in CD68-positive area. Next, JAM-A antibody conjugated microbubbles (MBJAM-A) or control IgG-conjugated microbubbles (MBC) were developed by conjugating the biotinylated antibodies to the streptavidin modified microbubbles, and visualization by contrast-enhance ultrasound (CEUS). Signal intensity of MBJAM-A was substantially enhanced and prolonged in the vulnerable plaque and some of the MBJAM-A was found colocalized with CD68 positive macrophages. In addition, cell model revealed that MBJAM-A were able to be phagocytized by activated macrophages. Taken together, we have found that increase of JAM-A serves as a marker for vulnerable plaques and targeted CEUS would be possibly a novel non-invasive molecular imaging method for plaque vulnerability.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , , , , ,