Article ID Journal Published Year Pages File Type
5442935 Optical Materials 2017 6 Pages PDF
Abstract
In this paper we report on the spectroscopic properties of Mn4+ (3d3) ion in the orthorhombic perovskite, GdAlO3 and calculate the energy levels using the exchange charge model of crystal-field theory. The calculated Mn4+ energy levels are in good agreement with the experimental data. The results of our calculations yield the crystal-field splitting and Racah parameters of Dq = 2083 cm−1, B = 780 cm−1 and C = 2864 cm−1, with C/B = 3.67. The emission spectrum is composed of the zero phonon line (2Eg → 4A2g transition) with dominating intensity and its vibrational sidebands. We have also calculated Mulliken atomic charges and bond populations for three isostructural perovskites (GdAlO3, LaGaO3 and CaZrO3) to seek correlation between the energy position of the Mn4+2E level and the covalence of Mn4+O2- chemical bonding.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,