Article ID Journal Published Year Pages File Type
5453797 Journal of Nuclear Materials 2017 13 Pages PDF
Abstract
Recrystallization and thermal shock fatigue resistance behavior of nanoscale ZrC dispersion strengthened bulk tungsten alloys (W-0.5 wt% ZrC, WZrC) as potential candidates for plasma-facing components were investigated. By employing heat treatments with isochronal experiments, the evolution of the tungsten grain size/orientation, second phase particle distribution, thermal conductivity and mechanical properties were systematically studied. The effects of edge-localized mode like transient heat events on the as-rolled and recrystallized WZrC were investigated carefully. Pulses from an electron beam with durations of 1 ms were used to simulate the transient heat loading in fusion devices. The cracking thresholds, cracking mechanisms and recrystallization under repetitive (100 shots) transient heat loads were investigated. Results indicate that the cracking threshold of all the WZrC samples is 220-330 MW/m2 (corresponding to a heat load parameter F = 7.0-10.4 MJ/m2s1/2) at room temperature and the heat bombardment induced recrystallization occurs at a heat parameter of 10.4 MJ/m2s1/2.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , , , , , , , ,