Article ID Journal Published Year Pages File Type
5453875 Journal of Nuclear Materials 2017 31 Pages PDF
Abstract
The process of oxidation in zirconium alloys is not straightforward. It includes cyclic periods, where the oxidation rate is decelerating as a function of increasing oxide thickness. Transition to the higher oxidation rate happens approximately after every 2 μm oxide growth and each cycle is associated with a layer of oxide with little or no cracking and a similar thickness layer with a large number of micro-scale lateral cracks. This work uses positron annihilation Doppler broadening spectroscopy to investigate the development of atomic-scale defect features in the oxides on Zircaloy-4 samples exposed to alkaline water at 350 °C. Results from the Doppler broadening measurements supported by Density Functional Theory calculations indicate that complexes involving both zirconium-site and oxygen-site vacancies exist in the oxide. The implications of the vacancies in the oxide layer are considered for oxygen diffusion and the oxidation rate.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , , ,