Article ID Journal Published Year Pages File Type
5453918 Journal of Nuclear Materials 2017 10 Pages PDF
Abstract
We have employed diamagnetic order for ThO2, PuO2 and CmO2, transverse 3k antiferromagnetic order for UO2 and AmO2, and longitudinal 3k antiferromagnetic order for NpO2. The Fm 3¯ m cubic symmetry is preserved for diamagnetic ThO2, PuO2 and CmO2 and longitudinal 3k NpO2. For UO2 and AmO2, the transverse 3k antiferromagnetic state results in Pa3¯ symmetry, in agreement with recent experimental findings. Although the electronic structure of ThO2 cannot be reproduced by DFT or DFT+U, for UO2, PuO2, NpO2, AmO2 and CmO2, the experimental properties are very well represented when U = 3.35 eV, 6.35 eV, 5.00 eV, 7.00 eV and 6.00 eV, respectively, with J = 0.00 eV, 0.00 eV, 0.75 eV, 0.50 eV and 0.00 eV, respectively.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , ,