Article ID Journal Published Year Pages File Type
5453979 Journal of Nuclear Materials 2017 16 Pages PDF
Abstract
For plasma-facing components of ITER, tritium (T) transport into the coolant by permeation through CuCrZr heat sink will raise T safety and recovery issues. In the present work, hydrogen isotope permeation and retention in copper (Cu) materials have been experimentally studied. Deuterium (D) gas-driven permeation (GDP) experiments have been performed to evaluate the permeability and diffusion coefficients. Meanwhile, D retention properties in these Cu materials are compared by gas absorption and subsequent thermal desorption spectroscopy (TDS). Finally, low energy (several eV) plasma-driven permeation (PDP) of D through Cu and its alloys has been demonstrated. Significant enhancement in D permeation flux compared with that of GDP has been measured.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , , , , , , ,