Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5454206 | Journal of Nuclear Materials | 2017 | 10 Pages |
Abstract
Thus far, a number of studies have investigated the irradiation evolution of oxide nanoparticles in b.c.c. Fe-Cr based oxide dispersion strengthened (ODS) alloys. But given the inconsistent experimental conditions, results have been widely variable and inconclusive. Crystal structure and chemistry changes differ from experiment to experiment, and the total nanoparticle volume fraction has been observed to both increase and decrease. Furthermore, there has not yet been a comprehensive review of the archival literature. In this paper, we summarize the existing studies on nanoparticle irradiation evolution. We note significant observations with respect to oxide nanoparticle crystallinity, composition, size, and number density. We discuss four possible contributing mechanisms for nanoparticle evolution: ballistic dissolution, Ostwald ripening, irradiation-enhanced diffusion, and homogeneous nucleation. Finally, we propose future directions to achieve a more comprehensive understanding of irradiation effects on oxide nanoparticles in ODS alloys.
Related Topics
Physical Sciences and Engineering
Energy
Nuclear Energy and Engineering
Authors
Janelle P. Wharry, Matthew J. Swenson, Kayla H. Yano,