Article ID Journal Published Year Pages File Type
5454209 Journal of Nuclear Materials 2017 10 Pages PDF
Abstract
An ultra-fine grained self-passivating tungsten alloy (W88-Cr10-Ti2 in wt.%) has been implanted with iodine ions to average doses of 0.7 and 7 dpa, as well as with helium ions to an average concentration of 650 appm. Pile-up corrected Berkovich nanoindentation reveals significant irradiation hardening, with a maximum hardening of 1.9 GPa (17.5%) observed. The brittle fracture strength of the material in all implantation conditions was measured through un-notched cantilever bending at the microscopic scale. All cantilever beams failed catastrophically in an intergranular fashion. A statistically confirmed small decrease in strength is observed after low dose implantation (−6%), whilst the high dose implantation results in a significant increase in fracture strength (+9%), further increased by additional helium implantation (+16%). The use of iodine ions as the implantation ion type is justified through a comparison of the hardening behaviour of pure tungsten under tungsten and iodine implantation.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , , , , , , ,