Article ID Journal Published Year Pages File Type
5454304 Journal of Nuclear Materials 2017 20 Pages PDF
Abstract
This work presents a 3D phase-field model to correctly evaluate dislocation loop sink strength. This method is applied to a wide range of microstructures (dislocation loops of various types with isotropic or anisotropic elasticity, like in Zr, cohabitation of different types of loop in the same calculation domain), which allows to exhibit several original results. Among them, in the case of isotropic elasticity, our model shows that the sink strength of vacancy loops is higher than that of interstitial ones for low loop radii. In the case of Zr, the effect on sink biases of the shape anisotropy of self-interstitial atoms, already exhibited in the case of straight dislocations, is enhanced for loops and stabilizes basal vacancy and prism-plane interstitial ones. Moreover, isotropic elastic interactions promote the coexistence of parallel vacancy and interstitial loops. This result is still valid in the case of prism-plane loops in Zr, which could provide explanations to several experimental facts.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , ,