Article ID Journal Published Year Pages File Type
5454430 Journal of Nuclear Materials 2017 8 Pages PDF
Abstract
Thin films of LiH and its corrosion products were studied using temperature programmed decomposition (TPD), x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Thin films were grown on Ni(100) in an ultra high vacuum system using an electron beam evaporator. Characteristic Li KLL AES peaks were identified for Li, LiH, Li2O and LiOH which facilitated identification of thin film composition. XPS of the O 1s region revealed three distinct chemical shifts which were attributed to Li2O, LiOH and chemisorbed H2O. We show that exposing LiH to very low H2O partial pressures results in formation of LiOH/Li2O domains on LiH. We also show that these XPS peaks can be linked to reaction mechanisms in the TPD profiles. TPD traces have been explicitly modelled to determine the activation energies of the reactions and compare favourably with previous measurements on bulk LiH samples.
Related Topics
Physical Sciences and Engineering Energy Nuclear Energy and Engineering
Authors
, , , ,