Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5486089 | Advances in Space Research | 2017 | 35 Pages |
Abstract
Obvious seasonal crustal vertical deformation largely related to mass redistribution on the Earth's surface can be captured by Gravity Recovery and Climate Experiment (GRACE), simulated by surface loading models (SLMs), and recorded by continuous Global Positioning System (GPS). Vertical deformation time series at 224 GPS stations with more than four-year continuous observations are compared with time series obtained by GRACE and SLMs with the aim of investigating the consistency of the seasonal crustal vertical deformation obtained by different techniques in mainland China. Results of these techniques show obvious seasonal vertical deformation with high consistency at almost all stations. The GPS-derived seasonal vertical deformation can be explained, to some content, by the environmental mass redistribution effect represented by GRACE and SLMs. Though the mean weighted root mean square reduction is 34% after removing the environmental mass loading from the monthly GPS height time series (up to 47% for the mean annual signals), systematic signals are still evident in the residual time series. The systematic residuals are probably attributed to GPS related errors, such as draconitic errors, while the leakage errors in the GRACE data processing and unmodeled components in land water storage should be considered in some regions. Additionally, the obvious seasonal residual perturbations in Southwest China may be related to the leakage errors in the GRACE data processing and large uncertainty in the land water storage in SLMs, indicating that GPS observations may provide more realistic mass transport estimates in Southwest China.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Space and Planetary Science
Authors
Yanchao Gu, Linguo Yuan, Dongming Fan, Wei You, Yong Su,