Article ID Journal Published Year Pages File Type
548632 Applied Ergonomics 2010 11 Pages PDF
Abstract

Current laparoscopic surgery instruments create awkward postures which produce fatigue and pressure points in surgeons. In order to alleviate some of this discomfort a new laparoscopic tool had been developed with the inclusion of an articulating end-effector manipulated by a trackball. The current study was developed to access the performance of four input devices which could replace the manual trackball in a powered laparoscopic tool. A simple Fitts’ law task was conducted and the devices’ performance was evaluated with both subjective and objective measures. This article makes three main contributions to the scientific community. First, it provides a comparison of four control devices (TouchPad, Mouse Button Module, MiniJoystick Module and MicroJoystick) for use in a powered laparoscopic tool. Second, it provides an understanding of how the non-traditional measure of target re-entry can be utilized to compare control devices and how this relates to the more traditional measures of throughput and error rate. Finally, it contributes to the understanding of how a user's familiarity with a control device could affect the subjective and objective performance of the device. The main results indicate that the TouchPad and MicroJoystick are the best candidate-devices for use in a powered laparoscopic tool. The article also provides support for utilizing the new measure target re-entry when comparing control performance. Although studied in the application of laparoscopic surgery, the results can be generalized for the design of any hand-held device in which the speed and accuracy of the control device is critical.

Related Topics
Physical Sciences and Engineering Computer Science Human-Computer Interaction
Authors
, , ,