Article ID Journal Published Year Pages File Type
5488453 Infrared Physics & Technology 2017 15 Pages PDF
Abstract
Recent advances have shown a great potential to explore compressive sensing (CS) theory for thermal imaging due to the capability of recovering high-resolution information from low-resolution measurements. In this paper, we present a Bayesian CS reconstruction algorithm that makes use of a new sparsity-inducing prior, referred as Gaussian-Jeffreys prior, and demonstrate performance gain of imposing this new prior on thermal imagery where the signal-to-noise ratio is low. We first derive a hierarchical representation of the Gaussian-Jeffreys prior that facilitates computational tractability, then propose an efficient evidence approximation inference algorithm. We show that the proposed estimator is able to provide stronger sparsity-inducing power comparing to the conventional choices. Extensive numerical examples are provided with performance comparisons of different CS estimators, in particular when the compressive measurements are available via thermal imaging.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Atomic and Molecular Physics, and Optics
Authors
, , ,