Article ID Journal Published Year Pages File Type
5488789 Current Applied Physics 2017 7 Pages PDF
Abstract
Based on the statistical approach to the description of the structure of liquid metals, it has been shown that during wire heating with a current pulse, the drastic local increase in the electric resistance of the liquid metal leads to the development of overheating instability. The increase in the electric resistance of the liquid metal is a consequence of the destruction of individual atom clusters that form short range order in the liquid metal. Non-uniform heating leads to the transition of liquid metal into a two-phase “gas-liquid” state formed by the expanding products of the explosion of wires. The majority of the expanding wire explosion products are liquid phase particles; those coagulate to form a binary melt. It has been shown by the example of Pb/Al, Ag/Cu and Cu/Al nanoparticles forming during the electric explosion of two wires made of different metals that the structure and phase state of the particles is determined by the probability of the formation of the binary melt that depends on the temperature of the coagulating particles.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, ,