Article ID Journal Published Year Pages File Type
5488796 Current Applied Physics 2017 24 Pages PDF
Abstract
Carbon nanomaterials are prominent building blocks in the synthetic van der Waals (vdW) heterostructures with desired properties. Scientific understanding of their interfacial interactions is the premise to design this kind of vdW heterostructures with optimal performance. We here study the mechanism of enhanced photocatalytic activity of SnO2 by fullerene modification at electronic level, to explore the interfacial interaction and its correlation with photocatalytic activity. The results show that the interfacial interaction increases with the number of C atom of fullerene, and leads to some of C atoms be positively/negatively charged, making the fullerene a highly active co-catalyst in heterostructures. Compared to pristine SnO2, the band gap of the heterostructures is much smaller, leading to their absorption wavelength extending the entire visible region. Interestingly, a staggered type-II band alignment in the C20 (C60)/SnO2 (101) heterostructures results into the robust separation of photoexcited charge carriers between the two constituents, indicating that the fullerene is an effective sensitizer, and thus enhanced photocatalytic activity. These findings can rationalize the available experiment and will be of broad interest in developing the highly efficient semiconductor photocatalysts via fullerene modification.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , , ,