Article ID Journal Published Year Pages File Type
5488859 Current Applied Physics 2017 8 Pages PDF
Abstract

•KF-solution treated CZTSSe thin films were used as PDT for absorber layers.•Proper KF treatment showed enhanced efficiency whereas excess doping distorted J-V curve resulting in lower efficiency.•The interface recombination was found to be reduced for 1 min KF treated solar cell.•The proper KF-treatment mitigated defect levels and reduced the defect densities.

Post deposition treatment (PDT) for Cu2ZnSn(S,Se)4 (CZTSSe) was carried out by simply dipping the absorber into the KF solution at 80 °C. The dipping time of absorber in KF solution was found to be crucial to device parameters of CZTSSe solar cell. The K-doping improved the solar cell efficiency from 4.4% to 7.6% by 1 min dipping whereas the longer than 5 min dipping solar cells showed distorted kink J-V curves. The activation energy of CZTSSe solar cell was increased upto 1 min KF treatment from 0.83 eV to 0.92 eV which indicates interface recombination is reduced significantly. However, the activation energies of 5 min and 10 min dipping solar cells were found to be 0.81 eV and 0.63 eV where dominant recombination was interface recombination. Furthermore, trap energies of 49 meV and 298 meV of pristine CZTSSe solar cell were modified to 33 meV and 117 meV for 1 min treated CZTSSe solar cell. Trap energies of 5 min were calculated to be 112 meV and 147 meV. The proper KF doping passivated the shallow as well as deep defects of CZTSSe solar cell which is reflected in photovoltaic performances directly.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , ,