Article ID Journal Published Year Pages File Type
5489019 Current Applied Physics 2017 7 Pages PDF
Abstract
In order to clarify the site occupancy of rare-earth ions in rare-earth doped perovskite materials, the un-doped pure CaTiO3 and Eu3+-doped CaTiO3 samples with a series of Ca/Ti ratio were synthesized via high-temperature solid-state reaction method. X-ray diffraction (XRD) powder patterns confirm that the crystal structure keeps invariant at various Ca/Ti ratios. Measurement results of unit-cell parameters and X-ray photoelectron spectroscopy (XPS) indicate that Eu3+ ions enter into the Ca2+ site. The high-resolution photoluminescence spectra of Eu3+ ions at 20 K in all samples did not witness a significant change under the excitation at different wavelength, implying that Eu3+ ions occupy only one type of site. Considering the small spectral splitting range of 5D0 → 7F2 transition and the large intensity ratio of 5D0 → 7F2/5D0 → 7F1, it can be concluded that Eu3+ occupies Ca2+ site with larger coordinate numbers rather than Ti4+ site.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , , ,