Article ID Journal Published Year Pages File Type
5489023 Current Applied Physics 2017 32 Pages PDF
Abstract
Conventional CdTe solar cells have a CdS window layer, in which an absorption loss of photons with more than 2.4 eV occurs through the CdS layer. A thinner CdS layer was applied to enhance light transmission and a ZnO buffer layer with a band gap of 3.3 eV was introduced to suppress shunting through the thinner CdS window layer. A 100-nm thick ZnO layer sputter-deposited at 300 °C had uniform coverage on a transparent conductive oxide (TCO) after a subsequent high-temperature process. The ZnO layer was effective in preventing shunting through the CdS window layer so that the open-circuit voltage and fill factor of the CdTe solar cells were recovered and the short-circuit current was enhanced over that of the conventional CdTe solar cell. In the ZnO/CdS/CdTe configuration, the short-circuit current was further improved throughout the visible wavelength region by replacing the Cu-metal contact with a Cu solution contact. As a result the short-circuit current from 21.7 to 26.1 mA/cm2 and the conversion efficiency of the CdTe solar cell increased from 12 to 15% without antireflective coating. Our result indicates that the Cu solution back contact is a critical factor for achieving a higher cell efficiency in addition to ZnO buffer layer.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,