Article ID Journal Published Year Pages File Type
5491372 Magnetic Resonance Imaging 2018 13 Pages PDF
Abstract
Multi-echo Chemical Shift-Encoded (CSE) methods for Fat-Water quantification are growing in clinical use due to their ability to estimate and correct some confounding effects. State of the art CSE water/fat separation approaches rely on a multi-peak fat spectrum with peak frequencies and relative amplitudes kept constant over the entire MRI dataset. However, the latter approximation introduces a systematic error in fat percentage quantification in patients where the differences in lipid chemical composition are significant (such as for neuromuscular disorders) because of the spatial dependence of the peak amplitudes. The present work aims to overcome this limitation by taking advantage of an unsupervised clusterization-based approach offering a reliable criterion to carry out a data-driven segmentation of the input MRI dataset into multiple regions. Results established that the presented algorithm is able to identify at least 4 different partitions from MRI dataset under which to perform independent self-calibration routines and was found robust in NMD imaging studies (as evaluated on a cohort of 24 subjects) against latest CSE techniques with either calibrated or non-calibrated approaches. Particularly, the PDFF of the thigh was more reproducible for the quantitative estimation of pathological muscular fat infiltrations, which may be promising to evaluate disease progression in clinical practice.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,