Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5493899 | Nuclear Physics A | 2017 | 12 Pages |
Abstract
In this work we have suggested a solution of the Gribov-Levin-Ryskin, Mueller-Qiu (GLR-MQ) nonlinear evolution equation at next-to-next-to-leading order (NNLO). The range of Q2 in which we have solved the GLR-MQ equation is Regge region of the range 6.5GeV2â¤Q2â¤25GeV2 and so we have incorporated the Regge like behavior to obtain Q2 evolution of gluon distribution function G(x,Q2). We have also checked the sensitivity of our results for different values of correlation radius (R) between two interacting gluons, viz. R=2GeVâ1 and R=5GeVâ1 as well as for different values of Regge intercept λG. Our results are compared with those of most recent global DGLAP fits obtained by various parametrization groups viz. PDF4LHC15, NNPDF3.0, HERAPDF15, CT14 and ABM12.
Keywords
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Nuclear and High Energy Physics
Authors
P. Phukan, M. Lalung, J.K. Sarma,