Article ID Journal Published Year Pages File Type
5494844 Physics Letters B 2017 8 Pages PDF
Abstract
We use Fisher Matrix analysis techniques to forecast the cosmological impact of astrophysical tests of the stability of the fine-structure constant to be carried out by the forthcoming ESPRESSO spectrograph at the VLT (due for commissioning in late 2017), as well by the planned high-resolution spectrograph (currently in Phase A) for the European Extremely Large Telescope. Assuming a fiducial model without α variations, we show that ESPRESSO can improve current bounds on the Eötvös parameter-which quantifies Weak Equivalence Principle violations-by up to two orders of magnitude, leading to stronger bounds than those expected from the ongoing tests with the MICROSCOPE satellite, while constraints from the E-ELT should be competitive with those of the proposed STEP satellite. Should an α variation be detected, these measurements will further constrain cosmological parameters, being particularly sensitive to the dynamics of dark energy.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Nuclear and High Energy Physics
Authors
, , , ,