Article ID Journal Published Year Pages File Type
5499236 Radiation Physics and Chemistry 2017 4 Pages PDF
Abstract
In this article we present the relativistic calculations, based on the QED theory, for double ionization of helium by the Compton scattering. In particular, we calculate the contribution of the spin-flip amplitude to the total cross section. Due to this amplitude the final triplet spin state of the ejected electrons is possible. In the calculations based on the non-relativistic A2 term of the electron-photon interaction only the singlet spin state for the final electrons is allowed. We further assume the shake-off mechanism for process of double ionization. For the ground state of helium we use both the non-correlated and highly correlated wave function. We also discuss a degree of the scattered photon polarization in correlation with the formation of spin triplet state. Our calculations cover the photon impact energy range from 150 to 1000 keV.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, ,