Article ID Journal Published Year Pages File Type
5499629 Chaos, Solitons & Fractals 2016 10 Pages PDF
Abstract
As a controllable nonlinear element, memristor is easy to produce the chaotic signal. Most of the current researchers focus on the nonlinear characteristics of the memristor, however, its ability to control and adjust chaotic systems is often neglected. Therefore, a memristive chaotic system is introduced to generate a kind of heart-shaped attractors in this paper. To further understand the complex dynamics of the system, several basic dynamical behavior of the new chaotic system, such as dissipation and the stability of the equilibrium point is investigated. Some basic properties such as Poincaré-map, Lyapunov index and bifurcation diagram are presented, either analytically or numerically. In addition, the influence of parameters on the system's dynamic behavior is analyzed. Finally, an analog implementation based on PSPICE simulation is also designed. The obtained results clearly show this chaotic system has rich nonlinear characteristics. Some interesting conclusions can be drawn that memristors bring the following effects on chaotic systems: (a) when the polarity of the memristor is changed, a mirror image of the chaotic attractors will appeared in the system; (b) along with the proper choose of the memristor parameters, the chaotic motion of system will be suppressed and enhanced, which makes the system can be applied to the practice on either generating chaos signal or suppressing chaotic interference.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Statistical and Nonlinear Physics
Authors
, , , ,