Article ID Journal Published Year Pages File Type
5500138 Journal of Geometry and Physics 2017 22 Pages PDF
Abstract
The theory of harmonic vector fields on Riemannian manifolds is generalised to pseudo-Riemannian manifolds. The congruence structure of conformal gradient fields on pseudo-Riemannian hyperquadrics and Killing fields on pseudo-Riemannian quadrics is elucidated, and harmonic vector fields of these two types are classified up to congruence. A para-Kähler twisted anti-isometry is used to correlate harmonic vector fields on the quadrics of neutral signature.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,