Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5501571 | Experimental Gerontology | 2017 | 38 Pages |
Abstract
2-[4-(5-Chlorobenzothiazothiazol-2-yl)phenoxy]-2-methyl-propionic acid (MHY908) has been shown to prevent insulin resistance-induced hyperinsulinemia in aged rats. However, the mechanism underlying MHY908-mediated amelioration of renal inflammation with insulin resistance during aging remains unknown. This study investigated the effects of MHY908 on age-related changes in the IRS/Akt/forkhead box (FoxO) 1 signaling pathway in the kidneys of aged rats and HEK293T cells. Experiments were performed in young, old, and MHY908-fed old rats (1 mg or 3 mg/kg/day MHY908 for 4 weeks). We found that MHY908-fed old rats suppressed phosphorylation of IRS/Akt and induced FoxO1 activation, leading to increased expression of MnSOD and catalase. In addition, in insulin-treated cells, MHY908 prevented the FoxO1 inactivation and increased the expression of MnSOD and catalase by inactivating IRS and Akt. In contrast, NF-κB signaling pathway decreased with MHY908 treatment in insulin-treated cells. Furthermore, MHY908 exclusively activated peroxisome proliferator-activated receptor (PPAR) α in the kidneys, leading to the inhibition of insulin-induced NADPH oxidase subunit 4 (NOX4)-derived reactive oxygen species (ROS) generation and FoxO1 inactivation. In conclusion, MHY908 improved the hyperinsulinemia-induced pro-inflammatory response through NF-κB inactivation and FoxO1 activation in aged rat kidneys. These phenomena suggest that PPARα activation by MHY908 attenuates NOX4-derived ROS generation in response to insulin.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Ageing
Authors
Ye Ra Kim, Eun Kyeong Lee, Dae Hyun Kim, Kyung Mok Kim, Bonggi Lee, Hye Jin An, June Whoun Park, Kyoung Mi Moon, Min Hi Park, Ki Wung Chung, Ji Young Park, Seong Jin Kim, Hwi Young Yun, Sujin Son, Pusoon Chun, Hyung Ryong Moon, Hae Young Chung,