Article ID Journal Published Year Pages File Type
5504381 Archives of Biochemistry and Biophysics 2017 32 Pages PDF
Abstract
Protein kinase C (PKC) isozymes modulate voltage-gated calcium (Cav) currents through Cav2.2 and Cav2.3 channels by targeting serine/threonine (Ser/Thr) phosphorylation sites of Cavα1 subunits. Stimulatory (Thr-422, Ser-2108 and Ser-2132) and inhibitory (Ser-425) sites were identified in the Cav2.2α1 subunits to PKCs βII and ε. In the current study, we investigated if the homologous sites of Cav2.3α1 subunits (stimulatory: Thr-365, Ser-1995 and Ser-2011; inhibitory: Ser-369) behaved in similar manner. Several Ala and Asp mutants were constructed in Cav2.3α1 subunits in such a way that the Ser/Thr sites can be examined in isolation. These mutants or WT Cav2.3α1 along with auxiliary β1b and α2/δ subunits were expressed in Xenopus oocytes and the effects of PKCs βII and ε studied on the barium current (IBa). Among these sites, stimulatory Thr-365 and Ser-1995 and inhibitory Ser-369 behaved similar to their homologs in Cav2.2α1 subunits. Furthermore PKCs produced neither stimulation nor inhibition when stimulatory Thr-365 or Ser-1995 and inhibitory Ser-369 were present together. However, the PKCs potentiated the IBa when two stimulatory sites, Thr-365 and Ser-1995 were present together, thus overcoming the inhibitory effect of Ser-369. Taken together net PKC effect may be the difference between the responses of the stimulatory and inhibitory sites.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,