Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5506065 | Biochemical and Biophysical Research Communications | 2017 | 6 Pages |
Abstract
Adrenomedullin (AM) is a potent hypotensive peptide that exerts a powerful variety of protective effects against multiorgan damage through the AM type 1 receptor (AM1 receptor), which consists of the calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 2 (RAMP2). Two β-arrestin (β-arr) isoforms, β-arr-1 and β-arr-2, play a central role in the agonist-induced internalization of many receptors for receptor resensitization. Notably, β-arr-biased agonists are now being tested in phase II clinical trials, targeting acute pain and acute heart failure. Here, we examined the effects of β-arr-1 and β-arr-2 on human AM1 receptor internalization. We constructed a V5-tagged chimera in which the cytoplasmic C-terminal tail (C-tail) of CLR was replaced with that of the β2-adrenergic receptor (β2-AR), and it was transiently transfected into HEK-293 cells that stably expressed RAMP2. The cell-surface expression and internalization of the wild-type or chimeric receptor were quantified by flow cytometric analysis. The [125I]AM binding and the AM-induced cAMP production of these receptors were also determined. Surprisingly, the coexpression of β-arr-1 or -2 resulted in significant decreases in AM1 receptor internalization without affecting AM binding and signaling prior to receptor internalization. Dominant-negative (DN) β-arr-1 or -2 also significantly decreased AM-induced AM1 receptor internalization. In contrast, the AM-induced internalization of the chimeric AM1 receptor was markedly augmented by the cotransfection of β-arr-1 or -2 and significantly reduced by the coexpression of DN-β-arr-1 or -2. These results were consistent with those seen for β2-AR. Thus, both β-arrs negatively control AM1 receptor internalization, which depends on the C-tail of CLR.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Kenji M.D., Ph.D., Kazuo Kitamura, Sayaka Nagata, Toshio Sekiguchi, Jiang Danfeng, Manabu Murakami, Yuichi Hattori, Johji Kato,