Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5506068 | Biochemical and Biophysical Research Communications | 2017 | 7 Pages |
Abstract
Human synovial fluid-derived mesenchymal stem cells (SFMSCs) have great potential for cartilage induction and are promising for cell-based strategies for articular cartilage repair. Many long non-coding RNAs (lncRNAs) regulate chondrogenesis of MSCs. We hypothesized that the divergent lncRNA ZBED3-AS1, which binds locally to chromatin, could promote the expression of zbed3, a novel Axin-interacting protein that activates Wnt/β-catenin signaling, involved in chondrogenesis. However, the function of ZBED3-AS1 in SFMSCs is unclear. In this study, the expression, biological function, and roles of ZBED3-AS1 in SFMSC chondrogenesis were examined by multilineage differentiation, flow cytometry, and gain-of-function studies. We found that ZBED3-AS1 promotes chondrogenesis. Furthermore, ZBED3-AS1 could directly increase zbed3 expression. Finally, the wnt-inhibitor DKK1 could reverse the stimulatory effect of ZBED3-AS1 on chondrogenesis. These findings demonstrate the role of a new lncRNA, ZBED3-AS1, in SFMSC chondrogenesis and may improve osteoarthritis treatment.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Farong Ou, Kai Su, Jiadong Sun, Wenting Liao, Yu Yao, Youhua Zheng, Zhiguang Zhang,