Article ID Journal Published Year Pages File Type
5506081 Biochemical and Biophysical Research Communications 2017 19 Pages PDF
Abstract
Glioblastoma (GBM) accounts for about half of all malignant brain cancers. Although the treatment strategies for glioblastoma develop rapidly, a considerable number of patients could not benefit from temozolomide (TMZ)-based chemotherapy. Here, we revealed a miR-124-AURKA axis that regulated glioblastoma growth and chemosensitivity. Mechanistically, AURKA was up-regulated in glioblastoma tissues and associated with poor overall survival. While overexpression of AURKA enhanced tumor growth, genetic or pharmacological inhibition of AURKA led to growth-inhibitory and chemopotentiating effects in glioblastoma. AURKA was further identified as a target of miR-124. Furthermore, our data showed that miR-124 down-regulated AURKA expression and subsequently suppressed cell growth. Re-expression of AURKA significantly rescued miR124-mediated proliferation repression and chemosensitivity. In conclusion, our results demonstrated that miR-124 inhibited glioblastoma growth and potentiated chemosensitivity by targeting AURKA, which may represent promising targets and rational therapeutic options for glioblastoma.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , ,