Article ID Journal Published Year Pages File Type
5506095 Biochemical and Biophysical Research Communications 2017 7 Pages PDF
Abstract
The pectin in plant cell walls consists of three domains: homogalacturonan, rhamnogalacturonan (RG)-I, and RG-II. It is predicted that around 50 different glycosyltransferases are required for their biosynthesis. Among these, the activities of only a few glycosyltransferases have been detected because pectic oligosaccharides are not readily available for use as substrates. In this study, fluorogenic pyridylaminated RG-I-backbone oligosaccharides (PA-RGs) with 3-14 degrees of polymerization (DP) were prepared. Using these oligosaccharides, the activity of RG-I:rhamnosyltransferase (RRT), involved in the biosynthesis of the RG-I backbone diglycosyl repeating units (-4GalUAα1-2Rhaα1-), was detected from the microsomes of azuki bean epicotyls. RRT was found to prefer longer acceptor substrates, PA-RGs with a DP > 7, and it does not require any metal ions for its activity. RRT is located in the Golgi and endoplasmic reticulum. The activity of RRT coincided with epicotyl growth, suggesting that RG-I biosynthesis is involved in plant growth.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , , , ,