Article ID Journal Published Year Pages File Type
5506167 Biochemical and Biophysical Research Communications 2017 5 Pages PDF
Abstract
PAX3 functions at the nodal point in neural stem cell maintenance and differentiation. Using bioinformatics methods, we identified PAX3 as a potential regulator of β-Tubulin-III (TUBB3) gene transcription, and the results indicated that PAX3 might be involved in neural stem cell (NSC) differentiation by orchestrating the expression of cytoskeletal proteins. In the present study, we reported that PAX3 could inhibit the differentiation of NSCs and the expression of TUBB3. Further, using luciferase and electrophoretic mobility shift assays, we demonstrated that PAX3 could bind to the promoter region of TUBB3 and inhibit TUBB3 transcription. Finally, we confirmed that PAX3 could bind to the promoter region of endogenous TUBB3 in the native chromatin of NSCs. These findings indicated that PAX3 is a pivotal factor targeting various molecules during differentiation of NSCs in vitro.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , ,