| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 5506244 | Biochemical and Biophysical Research Communications | 2017 | 25 Pages | 
Abstract
												The regeneration of injured tubular cell occurs primarily from intrinsic renal stem/progenitor cells (RSCs) labeled with CD24 and CD133 after acute tubular necrosis (ATN). Bmi-1 plays a crucial role in regulating self-renewal, differentiation and aging of multiple adult stem cells and progenitor cells. Bmi-1 was rapidly elevated in the induction of adult kidney regeneration by renal injury. To determine whether Bmi-1 maintained mobilization of RSCs in the protection from ATN, glycerol-rhabdomyolysis-induced ATN were performed in wild type (WT) and Bmi-1-deficient (Bmi-1â/â) mice. Their ATN phenotypes were analyzed; CD24 and CD133 double positive (CD24+CD133+) cells were measured; and the levels of serum urea nitrogen (SUN) and serum creatinine (SCr) were detected. We found that CD24+CD133+ RSCs were mobilized in WT ATN mice with the increased expression of Bmi-1; Bmi-1 deficiency led to increased tubular cast formation and necrosis, elevated levels of SUN and SCr, decreased tubular proliferation, and immobilized ratio of RSCs in ATN. These findings indicated that Bmi-1 played a critical role in the protection from ATN by maintaining mobilization of RSCs and would be a novel therapeutic target for preventing the progression of ATN.
											Related Topics
												
													Life Sciences
													Biochemistry, Genetics and Molecular Biology
													Biochemistry
												
											Authors
												Xianhui Lv, Zhenzhen Yu, Chunfeng Xie, Xiuliang Dai, Qing Li, Dengshun Miao, Jianliang Jin, 
											