Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5506266 | Biochemical and Biophysical Research Communications | 2017 | 21 Pages |
Abstract
CRISPR/Cas9 has been widely used for genomic editing in many organisms. Many human diseases are caused by multiple mutations. The CRISPR/Cas9 system provides a potential tool to introduce multiple mutations in a genome. To mimic complicated genomic variants in human diseases, such as multiple gene deletions or mutations, two or more small guide RNAs (sgRNAs) need to be introduced all together. This can be achieved by separate Pol III promoters in a construct. However, limited enzyme sites and increased insertion size lower the efficiency to make a construct. Here, we report a strategy to quickly assembly multiple sgRNAs in one construct using a polycistronic-tRNA-gRNA (PTG) strategy. Taking advantage of the endogenous tRNA processing system in mammalian cells, we efficiently express multiple sgRNAs driven using only one Pol III promoter. Using an all-in-one construct carrying PTG, we disrupt the deacetylase domain in multiple histone deacetylases (HDACs) in human cells simultaneously. We demonstrate that multiple HDAC deletions significantly affect the activation of the Wnt-signaling pathway. Thus, this method enables to efficiently target multiple genes and provide a useful tool to establish mutated cells mimicking human diseases.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Fengping Dong, Kabin Xie, Yueying Chen, Yinong Yang, Yingwei Mao,