Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5506305 | Biochemical and Biophysical Research Communications | 2017 | 20 Pages |
Abstract
MicroRNA-27a (miR-27a) has been reported to be a brain-specific miRNA and aberrantly expressed in the brain suffered from traumatic brain injury (TBI). The present study is designed to investigate the potential role and molecular mechanism of miR-27a in the pathogenesis of TBI. The level of miR-27a in brain was manipulated by intracerebroventricular injection of lentiviral-encoding miR-27a before TBI induction. Real-time PCR was used to detected miR-27a and Forkhead box O3a (FoxO3a) levels in the hippocampus. Then, we evaluated the impact of miR-27a overexpression on neurological function, brain edema, lesion volume and neuronal autophagy after TBI. The blinding of miR-27a to the 3â²UTR of FoxO3a mRNA and its effects on FoxO3a translation were analyzed by luciferase reporter assay and Western blot. The downregulation of miR-27a and the increase in FoxO3a level were observed in the hippocampus post-TBI. Overexpression of miR-27a significantly attenuated neurological deficits and brain injury, especially suppressed autophagic activation after TBI. Furthermore, we identified that miR-27a directly targeted the FoxO3a 3â²UTR region to reduced FoxO3a protein expression. Knockdown of FoxO3a significantly reversed high levels of autophagy-related genes induced by TBI. Taken together, Overexpression of miR-27a may protect against brain injury via suppressing FoxO3a-mediated neuronal autophagy following TBI.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Liqian Sun, Manman Zhao, Yan Wang, Aihua Liu, Ming Lv, Youxiang Li, Xinjian Yang, Zhongxue Wu,