Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5506756 | Biochemical and Biophysical Research Communications | 2016 | 7 Pages |
Abstract
In eukaryotic cells, the post-translational modification of proteins by ubiquitin or ubiquitin-like proteins (UBLs) is the most common trigger for protein degradation and is involved in the regulation of a wide range of biological processes. FAT10 (HLA-F-adjacent transcript 10), which belongs to the UBL family, is activated specifically through the UBA6-USE1 cascade and targets substrates covalently for 26S proteasomal degradation. LMO2 is a well-recognized transcriptional regulator in hematopoietic and endothelial systems; however, it is predominantly located in the cytoplasm of epithelium-derived cells. The current study revealed that LMO2 protein interacted with the E1 ubiquitin-activating enzyme UBA6 at the C-terminal ubiquitin fold domain (UFD), which mediates the recognition and recruitment of the E2-conjugating enzyme USE1. Functionally, the LMO2-UBA6 interaction disturbed the interaction between UBA6 and USE1 and led to the decline of the overall cellular FAT10ylation level as well as the FAT10ylation and degradation of a known FAT10 substrate p62. Taken together, this study revealed a novel function of LMO2 involving in the regulatory hierarchy of UBA6-USE1-FAT10ylation pathway by targeting the E1 enzyme UBA6.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Chao Wu, Ye Liu, Xiangxiang Gu, Tianhui Zhu, Shuang Yang, Wei Sun,