Article ID Journal Published Year Pages File Type
5507528 Biochimica et Biophysica Acta (BBA) - Biomembranes 2017 33 Pages PDF
Abstract
Biosurfactants (BS) are surface-active molecules produced by microorganisms. For several decades they have attracted interest as promising alternatives to current petroleum-based surfactants. Aside from their green profile, they have remarkably low critical micelle concentrations, reduce the air/water surface tension to very low levels and are excellent emulsifiers, all of which make them comparable or superior to their synthetic counterparts. These remarkable physical properties derive from their more complex chemical structures in which hydrophilic and hydrophobic regions are not as clearly separated as chemical surfactants but have a more mosaic distribution of polarity as well as branched or circular structures. This allows the lipopeptide surfactin to adopt spherical structures to facilitate dense packing at interfaces. They are also more complex. Glycolipid BS, e.g. rhamnolipids (RL) and sophorolipids, are produced biologically as mixtures which vary in the size and saturation of the hydrophobic region as well as modifications in the hydrophilic headgroup, such as the number of sugar groups and different levels of acetylation, leading to variable surface-active properties. Their amphiphilicity allows RL to insert easily into membranes at sub-cmc concentrations to modulate membrane structure and extract lipopolysaccharides, leading to extensive biofilm remodeling in vivo, sometimes in collaboration with hydrophobic RL precursors. Thanks to their mosaicity, even anionic BS like RL only bind weakly to proteins and show much lower denaturing potency, even supporting membrane protein refolding. Nevertheless, they can promote protein degradation by proteases e.g. by neutralizing positive charges, which together with their biofilm-combating properties makes them very promising detergent surfactants. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
,