Article ID Journal Published Year Pages File Type
550798 Information and Software Technology 2006 20 Pages PDF
Abstract

The complexity of software systems has been increasing dramatically in the past decade, and software testing as a labor-intensive component is becoming more and more expensive. Testing costs often account for up to 50% of the total expense of software development; hence any techniques leading to the automatic generation of test data will have great potential to considerably reduce costs. Existing approaches of automatic test data generation have achieved some success by using evolutionary computation algorithms, but they are unable to deal with Boolean variables or enumerated types and they need to be improved in many other aspects. This paper presents a new approach utilizing program dependence analysis techniques and genetic algorithms (GAs) to generate test data. A set of experiments using the new approach is reported to show its effectiveness and efficiency based upon established criterion.

Related Topics
Physical Sciences and Engineering Computer Science Human-Computer Interaction
Authors
, , ,