Article ID Journal Published Year Pages File Type
5510783 Current Opinion in Structural Biology 2017 7 Pages PDF
Abstract
Collective variables are an important concept to study high-dimensional dynamical systems, such as molecular dynamics of macromolecules, liquids, or polymers, in particular to define relevant metastable states and state-transition or phase-transition. Over the past decade, a rigorous mathematical theory has been formulated to define optimal collective variables to characterize slow dynamical processes. Here we review recent developments, including a variational principle to find optimal approximations to slow collective variables from simulation data, and algorithms such as the time-lagged independent component analysis. Using these concepts, a distance metric can be defined that quantifies how slowly molecular conformations interconvert. Extensions and open questions are discussed.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,